
Chris Kimble
February 2008

Object Oriented Methodologies

The Next Generation

Chris Kimble
February 2008

Overview

• A review of the theory
– Why UML is not a methodology

• Three types of Object Oriented method
– Object Modelling Technique (OMT)
– Object Process Methodology (OPM)
– Rational Unified Process (RUP)

• Strengths and weaknesses
• What happens in practice

Chris Kimble
February 2008

A review of the theory

• What are the key features of Object Oriented
methods?
– Have strong links to object oriented languages
– Assumes the software description is closed but not

complete
– The software description is formed from observation of

reality
– Uses (closed) reality as a baseline to free the designer

from concerns about the problems of dealing with
inaccurate representations of the physical system

– Rather than working from the description to reality, these
methods work from reality back to the description =
realist ontology and empiricist epistemology

Chris Kimble
February 2008

Empiricism and Realism

• Empiricist arguments deal principally with
epistemology claiming that all knowledge derives
from observation. Thus, everything that can be
known, can only be known through experience.

• Realist arguments deal principally with ontology
claiming that there is such a thing as truth and that
all beliefs can be tested against a reality that is
knowable.

Chris Kimble
February 2008

Objects

• An object is a something (a thing or a concept)
that has a well-defined role in the application
domain

• It has an identity, state and behaviour and is
something to which actions are directed

• Its state encompasses its properties (attributes
and relationships) and their values

• Its behaviour is how it acts and reacts

Chris Kimble
February 2008

UML

• Unified Modelling Language (UML) is the accepted
“industry standard” language for modelling the
development of object oriented software.

• Grady Booch, James Rumbaugh and Ivar
Jacobson (The Three Amigos) are credited with
creating UML.

• The Object Management Group (OMG) are
credited with creating a “standardised” language
suitable for for dealing with object oriented
analysis and design in “real world” settings

Chris Kimble
February 2008

UML

STOP!

• is UML a Methodology?

Chris Kimble
February 2008

UML

• UML is a modelling language

• Object Oriented Analysis (OOA) and Object-
Oriented Design (OOD) are processes

• UML has rules for syntax and usage but it does
not have procedures (i.e. processes)

• Although a common language is needed in a
methodology, a language alone does not make a
methodology

Chris Kimble
February 2008

Types of OO method

• There are many Object Oriented (OO) tools,
techniques and languages but only a very few OO
methodologies

• Most of the OO methodologies originated in the
late 1990s following the rapid expansion of OO
Languages in the 1980s

• We will consider three of the most influential:
– Object Modelling Technique (OMT)
– Object Process Methodology (OPM)
– Rational Unified Process (RUP)

Chris Kimble
February 2008

OMT

• OMT (Object Modelling Technique) was one of the
first OO methodologies and was introduced by
Rumbaugh in 1991

• It uses three different models that are combined in
a way that is analogous to the older structured
methodologies (e.g. Yourdon DeMarco)

Chris Kimble
February 2008

OMT – An Overview

Chris Kimble
February 2008

OMT - Analysis

• The goal of the analysis is to build a model of the
world. The requirements of the users, developers
and managers provide the information needed to
develop the initial problem statement. Once the
initial problem is defined, the following tasks are
carried out:
– Build the Object Model, including a Class Diagram and a

Data Dictionary
– Develop the Dynamic Model, including State Transition

Diagrams and global Event-Trace Diagrams
– Constructing the Functional Model including Data Flow

Diagrams and constraints
– Verify and refine the three models

Chris Kimble
February 2008

OMT – The Models

• The Object Model (OM):
– depicts the object classes and their relationships

(together with their associated attributes and operations)
as a Class Diagram, which represents the static structure
of the system

• The Dynamic Model (DM):
– captures the behaviour of the system over time and the

flow of control and events in Event-Trace Diagrams and
State Transition Diagrams (State Charts)

• The Functional Model (FM):
– a hierarchical set of Data Flow Diagrams (DFD) that

describe internal processes independently from how
these processes are performed

Chris Kimble
February 2008

OMT - Object Design

• Object design specifies all of the details needed to
describe how the system will be implemented

• All of the classes, associations, attributes and
operations are fully defined, together with the
operations and data structures and any internal
objects needed for implementation

Chris Kimble
February 2008

OMT - System Design

• The system design phase deals with the high-level
structure of the system, e.g:
– Identify global resources
– Organize the system into subsystems
– Identify boundary conditions
– Identify concurrency
– Allocate subsystems and tasks
– Establish trade-off priorities
– Choose a strategy for implementing data stores
– Choose a strategy for implementing software controls

Chris Kimble
February 2008

Object Process Methodology
(OPM)

• OPM is a so-called second generation
methodology and was first introduced in 1995

• OPM has only one diagram the Object Process
Diagram (OPD) for modelling the structure,
function and behaviour of the system

• Every OPD can be described in text form using the
Object Process Language (OPL) a constrained
natural language

Chris Kimble
February 2008

An OPD and its equivalent in OPL

Chris Kimble
February 2008

Object Process Methodology
(OPM)

• OPM has a strong emphasis on modelling but has
a weaker emphasis on process and consists of
only three main processes:

• Initiating
– determining the high-level requirements, the scope of the

system and the resources that will be required
• Developing

– the detailed analysis, design and implementation of the
system

• Deploying
– introduction of the system to the user and subsequent

maintenance of the system

Chris Kimble
February 2008

OPM - Initiating

Consists of three sub-process:
• Identifying: the needs and/or opportunities to

justify the development of the system

• Conceiving: the system is “conceived” through
determining its scope and ensuring that the
necessary resources are available

• Initializing: determining the high-level
requirements of the system

Chris Kimble
February 2008

OPM - Developing

Consists of three sub-process:
• Analyzing: eliciting requirements, modelling the

problem domain in OPDs/OPLs and selecting an
architecture

• Designing: adding implementation specific details,
refining the architecture and detailing the process
logic (to be implemented as the program)

• Implementing: constructing the components of the
system and linking them together

Chris Kimble
February 2008

OPM - Deploying

Consists of four sub-process:
• Assimilating: introducing the system into the user

environment (training, documentation and system
conversion)

• Maintaining: maintenance tasks necessary to keep
the system in working order

• Evaluating: checking that the current system has
the functionality needed to satisfy current
requirements

• Terminating: declaring the current system as dead,
applying post-mortem procedures and the
generation of a new system

Chris Kimble
February 2008

Rational Unified Process (RUP)

• RUP was developed at Rational Corporation in
1998 by the same people that developed UML

• Although it is said to have a ‘life cycle’ RUP has an
evolutionary / iterative approach rather than the
linear / waterfall approach of earlier methodologies

Chris Kimble
February 2008

RUP – Phases and Iterations

• The RUP development cycle consists of four
phases which can be further broken down into
iterations

• Each iteration consists of nine work areas called
disciplines

Chris Kimble
February 2008

RUP - Disciplines

• The effort expended on a discipline depends on
the phase in which the iteration is taking place. For
example, Business modelling and requirements
are more important in the earlier phases, whereas
during later phases, most of the effort is put into
deployment and testing

• For each discipline, RUP defines a set of artefacts
(work products), activities (work undertaken on the
artefacts), and roles (the responsibilities of the
members of the development team)

Chris Kimble
February 2008

The ‘Life Cycle’

Chris Kimble
February 2008

RUP – The ‘Life Cycle’

The RUP life Cycle

Chris Kimble
February 2008

Strengths of OO

• In comparison to structured methodologies it is
generally claimed:
– To encourage greater re-use
– To produce a more detailed specification of system

constraints
– To have fewer problems with validation (are we building

the right product?)

Chris Kimble
February 2008

Strengths of OO

• Generally claimed to allow:
– A “seamless” development process
– A shift of development effort from implementation to

analysis: conceptual models, not computer models

• Also claimed:
– To have a clearer division and increased consistency

between analysis, design, and implementation
– To produce a more “natural” model of the problem
– To produce a “cleaner” design

Chris Kimble
February 2008

Weaknesses of OO

• In comparison to structured methodologies it is
generally claimed:
– To be poor at dealing with data
– To lack rigor and suitable project metrics
– To have problems with verification (are we building the

product right?) and demonstrating completeness

• Object oriented methods are also claimed to have
a weak notion of:
– Hierarchy (e.g. for designing software architecture)
– Inheritance (e.g. for designing a reusable class library)

Chris Kimble
February 2008

Weaknesses of OO

• The language used to model / describe objects is
limited and tends to describe the “what” rather
than “how”. Consequently it becomes difficult to
represent processes and the flow of control

• OO does not have a simple way to deal with data
and is not easy to use with legacy / database
systems built using structured / data driven
approaches

Chris Kimble
February 2008

A Practical Example

• Wybolt, N. (1990). Experiences with C++ and
Object Oriented software development. SIGSOFT
Softw. Eng. Notes, 15(2), 31-39.

